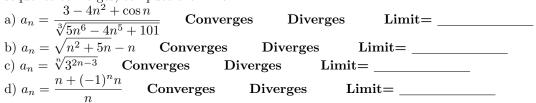
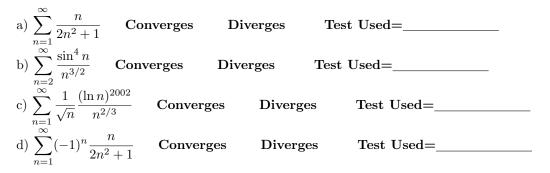
Question 1 For each of the following sequences $\{a_n\}$, decide whether it converges or diverges. If the sequence converges, compute the limit.



Question 2 For each of the following series decide whether the series converges or diverges. Write the name of the test(s) used.



Question 3 Compute the sum of the following infinite series: $\sum_{n=3}^{\infty} \frac{(-3)^{n-2}}{2^{3n+1}}$

Question 4 Find the interval of convergence of the power series: $\sum_{n=0}^{\infty} \frac{(-1)^n (n+3)!}{n! 3^{2n}} (2x-1)^n$. Don't forget to check the endpoints!

Question 5 Use the first three non-zero terms of the power series centered at x = 0 for $f(x) = \frac{\sin(2x^3)}{x^3}$ to estimate the integral $\int_0^1 f(x) dx$.

Question 6 Find the first three terms of the Taylor series for $f(x) = \tan x$ centered at $x = \pi/4$.

Question 7 For the parametric curve $x = (\cos t + \sin t)$, $y = (\cos t - \sin t)$, find the equation of the tangent line at the point where $t = \pi/3$. Find the length of the curve from t = 0 to $t = \pi/4$. Find the area of the surface of revolution gotten by rotating the curve from t = 0 to $t = \pi/4$ about the y-axis.

Question 8 Find the area enclosed by the cardioid $r = 2 + 2\sin\theta$. Find the equation of the tangent line to the cardioid at the point when $\theta = \pi/3$.

Question 9 Find the length of the spiral $r = \theta$ from $\theta = 0$ to $\theta = \pi/2$.

Question 10 Find the tangent line to the curve given by $\mathbf{r}(t) = (3 - 1/t^2)\mathbf{i} + \sin(\pi t)\mathbf{j} - (\ln(5 - 2t))\mathbf{k}$ at the point (11/4, 0, 0).

Question 11 Find the equation of the plane containing the two (parallel) lines: $\mathbf{r}_1(t) = (0, 1, -2) + t(1, -2, 4)$ and $\mathbf{r}_2(t) = (-5, 3, 1) + t(1, -2, 4)$.

Question 12 Find the equation of the line through the point (3, 1, -2) that intersects and is perpendicular to the line given parametrically as: x = -1 + t, y = -2 + t, z = -1 + t.

Question 13 Let $\mathbf{u} = (a, b, 1)$, $\mathbf{v} = (1, 2, 3)$ and $\mathbf{w} = (-3, 4, 7)$. Find a value of a and b that makes \mathbf{u} orthogonal to both \mathbf{v} and \mathbf{w} .

Question 14 Find the path $\mathbf{r}(t)$ which satisfies the condition $\frac{d\mathbf{r}}{dt} = (t^2 - t)\mathbf{i} - (\sin t)\mathbf{j} + (16 - t^3)\mathbf{k}$ and $\mathbf{r}(0) = 3\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}$.

Question 15 Find the length of the curve $\mathbf{r}(t) = (\sqrt{2}t)\mathbf{i} + e^t\mathbf{j} + e^{-t}\mathbf{k}, 0 \le t \le 2$. Find the curvature of the curve when t = 0.

Answers 1. a) C, $-4/\sqrt[3]{5}$ b) C, 5/2 c) C, 9 d) D 2. a) D, LCT or IT b) C, SCT c) C, LCT d) C, AST 3. $\frac{-3}{(2^{7})(11)}$ 4. -4 < x < 5 5. $2 - \frac{8}{(3!)(7)} + \frac{32}{(5!)(13)}$ 6. $1 + 2(x - \pi/4) + 2(x - \pi/4)^{2}$ 7. $y - \frac{1}{2}(1 - \sqrt{3}) = \frac{1+\sqrt{3}}{\sqrt{3}-1} \left(x - \left(\frac{1}{2}(1 + \sqrt{3})\right), L = \frac{1}{4}\sqrt{2}\pi, S = 2\sqrt{2}\pi$ 8. $A = 6\pi, y - \left(\frac{3}{2} + \sqrt{3}\right) = -1 \left(x - \left(1 + \sqrt{3}/2\right)\right)$ 9. $L = \int_{0}^{\pi/2} \sqrt{1 + \theta^{2}} d\theta = \frac{1}{8}\pi\sqrt{4 + \pi^{2}} + \frac{1}{2}\ln(2) - \frac{1}{2}\ln(-\pi + \sqrt{4 + \pi^{2}})$ 10. $(11/4, 0, 0) + t(\frac{1}{4}, \pi, 2)$ 11. 14x + 23y + 8z = 7 12. (3, 1, -2) + t(2, 1, -3) 13. a = 1/5, b = -8/514. $\mathbf{r}(t) = (\frac{1}{3}t^{3} - \frac{1}{2}t^{2} + 3)\mathbf{i} + (4 + \cos t)\mathbf{j} + (16t - \frac{1}{4}t^{4} - 7)\mathbf{k}$ 15. $L = e^{2} - e^{-2}, \ \kappa = \frac{1}{4}\sqrt{2}$ (Use Theorem 10 on page 901)