Math 143 Sample Final Exam Problems

Question 1 For each of the following sequences $\left\{a_{n}\right\}$, decide whether it converges or diverges. If the sequence converges, compute the limit.
a) $a_{n}=\frac{3-4 n^{2}+\cos n}{\sqrt[3]{5 n^{6}-4 n^{5}+101}}$
Converges
Diverges \quad Limit $=$ \qquad
b) $a_{n}=\sqrt{n^{2}+5 n}-n \quad$ Converges \quad Diverges

Limit $=$ \qquad
c) $a_{n}=\sqrt[n]{3^{2 n-3}} \quad$ Converges

Diverges
Limit $=$ \qquad
d) $a_{n}=\frac{n+(-1)^{n} n}{n} \quad$ Converges \quad Diverges \quad Limit $=$ \qquad
Question 2 For each of the following series decide whether the series converges or diverges. Write the name of the test(s) used.
a) $\sum_{n=1}^{\infty} \frac{n}{2 n^{2}+1}$
Converges
Diverges
Test Used $=$ \qquad
b) $\sum_{n=2}^{\infty} \frac{\sin ^{4} n}{n^{3 / 2}}$

Converges Diverges
Test Used $=$ \qquad
c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \frac{(\ln n)^{2002}}{n^{2 / 3}}$

Converges Diverges
Test Used $=$ \qquad
d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2 n^{2}+1}$

Converges
Diverges
Test Used $=$ \qquad
Question 3 Compute the sum of the following infinite series: $\sum_{n=3}^{\infty} \frac{(-3)^{n-2}}{2^{3 n+1}}$
Question 4 Find the interval of convergence of the power series: $\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+3)!}{n!3^{2 n}}(2 x-1)^{n}$. Don't forget to check the endpoints!

Question 5 Use the first three non-zero terms of the power series centered at $x=0$ for $f(x)=\frac{\sin \left(2 x^{3}\right)}{x^{3}}$ to estimate the integral $\int_{0}^{1} f(x) d x$.

Question 6 Find the first three terms of the Taylor series for $f(x)=\tan x$ centered at $x=\pi / 4$.
Question 7 For the parametric curve $x=(\cos t+\sin t), y=(\cos t-\sin t)$, find the equation of the tangent line at the point where $t=\pi / 3$. Find the length of the curve from $t=0$ to $t=\pi / 4$. Find the area of the surface of revolution gotten by rotating the curve from $t=0$ to $t=\pi / 4$ about the y-axis.

Question 8 Find the area enclosed by the cardioid $r=2+2 \sin \theta$. Find the equation of the tangent line to the cardioid at the point when $\theta=\pi / 3$.

Question 9 Find the length of the spiral $r=\theta$ from $\theta=0$ to $\theta=\pi / 2$.
Question 10 Find the tangent line to the curve given by $\mathbf{r}(t)=\left(3-1 / t^{2}\right) \mathbf{i}+\sin (\pi t) \mathbf{j}-(\ln (5-2 t)) \mathbf{k}$ at the point (11/4, 0, 0).

Question 11 Find the equation of the plane containing the two (parallel) lines: $\mathbf{r}_{1}(t)=(0,1,-2)+$ $t(1,-2,4) \quad$ and $\quad \mathbf{r}_{2}(t)=(-5,3,1)+t(1,-2,4)$.

Question 12 Find the equation of the line through the point $(3,1,-2)$ that intersects and is perpendicular to the line given parametrically as: $x=-1+t, y=-2+t, z=-1+t$.

Question 13 Let $\mathbf{u}=(a, b, 1), \mathbf{v}=(1,2,3)$ and $\mathbf{w}=(-3,4,7)$. Find a value of a and b that makes \mathbf{u} orthogonal to both \mathbf{v} and \mathbf{w}.

Question 14 Find the path $\mathbf{r}(t)$ which satisfies the condition $\frac{d \mathbf{r}}{d t}=\left(t^{2}-t\right) \mathbf{i}-(\sin t) \mathbf{j}+\left(16-t^{3}\right) \mathbf{k}$ and $\mathbf{r}(0)=3 \mathbf{i}+5 \mathbf{j}-7 \mathbf{k}$.

Question 15 Find the length of the curve $\mathbf{r}(t)=(\sqrt{2} t) \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}, 0 \leq t \leq 2$. Find the curvature of the curve when $t=0$.

Answers 1. a) C, $-4 / \sqrt[3]{5}$ b) C, $5 / 2$ c) C, 9 d) D
2. a) D, LCT or IT b) C, SCT c) C, LCT d) C, AST
3. $\frac{-3}{\left(2^{7}\right)(11)} \quad 4 .-4<x<5 \quad 5.2-\frac{8}{(3!)(7)}+\frac{32}{(5!)(13)} \quad$ 6. $1+2(x-\pi / 4)+2(x-\pi / 4)^{2}$
7. $y-\frac{1}{2}(1-\sqrt{3})=\frac{1+\sqrt{3}}{\sqrt{3}-1}\left(x-\left(\frac{1}{2}(1+\sqrt{3})\right), L=\frac{1}{4} \sqrt{2} \pi, S=2 \sqrt{2} \pi\right.$
8. $A=6 \pi, y-\left(\frac{3}{2}+\sqrt{3}\right)=-1(x-(1+\sqrt{3} / 2))$
9. $L=\int_{0}^{\pi / 2} \sqrt{1+\theta^{2}} d \theta=\frac{1}{8} \pi \sqrt{4+\pi^{2}}+\frac{1}{2} \ln (2)-\frac{1}{2} \ln \left(-\pi+\sqrt{4+\pi^{2}}\right)$
10. $(11 / 4,0,0)+t\left(\frac{1}{4}, \pi, 2\right) \quad$ 11. $14 x+23 y+8 z=7 \quad$ 12. $(3,1,-2)+t(2,1,-3) \quad 13 . a=1 / 5, b=-8 / 5$
14. $\mathbf{r}(t)=\left(\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+3\right) \mathbf{i}+(4+\cos t) \mathbf{j}+\left(16 t-\frac{1}{4} t^{4}-7\right) \mathbf{k}$
15. $L=e^{2}-e^{-2}, \quad \kappa=\frac{1}{4} \sqrt{2}$ (Use Theorem 10 on page 901)

